
 

11 

 

Scientific Bulletin of the „Petru Maior” University of Tîrgu Mureş 

Vol. 9 (XXVI) no. 2, 2012, ISSN 2285 – 438X (Online), ISSN–L 1841 – 9267 

 

 

Scientific Bulletin of the „Petru Maior” University of Tîrgu Mureş 

Vol. 9 (XXVI) no. 2, 2012, ISSN 2285 – 438X (Online), ISSN–L 1841 – 9267 

 

 

EFFICIENT ENCODING OF INFLECTION RULES  

IN NLP SYSTEMS  
 

Péter BARABÁS
1
, László KOVÁCS

2
 

Department of Information Technology  

H-3515 Miskolc-Egyetemváros, Hungary 
1barabas@iit.uni-miskolc.hu,  
2kovacs@iit.uni-miskolc.hu 

 

ABSTRACT 
The grammatical parsing unit is a core module in natural language processing engines. 

This unit determines the grammatical roles of the incoming words and it converts the 

sentences into semantic models. A special grammar rule in agglutinative languages is the 

inflection rule. The traditional, automata-based parsers are usually not very effective in 

the parsing of inflection transformations. The paper presents implementation alternatives 

and compares them from the viewpoint of time efficiency and accuracy. The prototype 

system was tested with examples from Hungarian.   

Keywords: natural language processing, grammar parsing, formal concept analysis 

 

1. Introduction 

Natural Language Processing is a main 

component in intelligent human-computer interfaces. 

The human oriented interaction in the form of speech 

dialog provides a high level of usability on a wide 

range of application areas. A core module in NLP is 

the grammatical parsing unit. This unit determines the 

grammatical roles of the incoming words and it 

converts the sentences into semantic models. The area 

of Computational Linguistics (CL) is aimed at 

developing efficient morpheme analyzer engines for 

parsing the input sentences. In the 1960's, the 

research in CL was dominated by the symbolic, 

generic approaches based on the works of 

Chomsky[9], Harris[12] és Shannon[14]. The main 

assumption of this approach is that the brain has an 

inherit knowledge of the human grammar. A child 

owns a general grammar model which is adapted later 

to a specific concrete language. Another dominating 

direction is the cognitive approach represented among 

others by Browing[8] és Wallace[15]. The cognitive 

approach uses a model where the brain is initially 

empty and during the training evolves the structure of 

a specific grammar. The child owns only a generic 

ability to build a grammar. In the practical 

implementations of NLP systems, a full functional 

grammar parser is required where the main 

requirements are the high speed (low execution cost), 

high precision and open interface. To meet these 

requirements, specific implementations are developed 

which may differ from the pure theoretical models in 

many viewpoints.  

The main goal of the presented research is to 

compare the different practical implementation 

approaches on morpheme analysis for inflectional 

languages. The traditional approach is the application 

of a rule-based system with if-then rules like the 

Porter stemmer [1] works. Sometimes also a 

dictionary-based architecture can provide a more 

efficient solution too. In our investigation, also a 

grammar learning approach was developed to 

compare the efficiency and accuracy of the two main 

directions. 

For target language, the Hungarian language was 

selected where the grammatical and semantic roles of 

a word are usually encoded with suffixes applying 

different inflection rules. The input word for the 

engine is an arbitrary word of the sentence, for 

example: 

kutyáitokkal  

where the meaning of this word is in English: with 

your dogs. The output of the engine is the morpheme 

map of the word like 

kutya (stem) + i  (plural) + tok (owned by you) + 

val (with)  

As it can be observed, one of the difficulties to cope 

with is to manage the matching of the attached 

suffixes, like  

tok + val ==> tokkal   

mailto:1barabas@iit.uni-miskolc.hu


12 

 

The prototype systems were implemented in Java 

and C# languages, the paper includes the evaluation 

of the test results. 

2. Grammar representations 

A classic formalism for representing grammar is 

the Formal Grammar (FG) mechanism. In FG, Σ 

denotes the set of characters in the language. The 

symbol Σ* is for the finite sequence of the characters. 

The language L is defined as a subset Σ*. The 

language L can be given with a grammar G, where G 

is a tuple  (N, T, P, S) with  

 - T : set of  terminal symbols from Σ; 

 - N: set of new non-terminal symbols; 

 - S: the symbol for a sentence; 

 - P: set of production rules.  

The language L(G) denotes the set of sequences from 

Σ* that can be derived from S using P. Based on the 

complexity of the rule-set, Chomsky [11] has defined 

four base classes. These four classes are defined as 

follows: regular grammar with the simplest rules; 

context-free grammars; context-depending grammar 

and recursively enumerable grammars. A widely 

investigated problem is the role of natural languages 

within the Chomsky classification. Chomsky has 

argued [12] that NL has context dependent 

characteristics. Others, like [10] consider NL as a 

subclass of regular language as every NL is a finite 

language, thus finite regular automata can be applied 

to parse the sentences. One practical drawback of the 

regular approach is that the related regular automaton 

is too huge for implementation.  

The most widely used representation formalisms 

for formal grammars are the finite deterministic 

automata (FSA), the stack automata and the TAG 

architecture. In the case of FSA, every node of the 

automata corresponds to a non-terminal element of 

the grammar, while the directed edges are assigned to 

the terminal symbols [13]. In the case of stack 

automata, the automaton has a special memory to 

save the previous states.  The TAG (Tree Adjoining 

Grammar) uses a hierarchy to store the grammar 

description. The TAG hierarchy is given with a tuple 

(N,T,I,A)  where T denotes the terminal symbols, N is 

for the non-terminal symbols, I is a finite set of initial 

trees and A is the set of auxiliary trees. The leaves of 

the trees are either terminal symbols or non-terminal 

symbols that can be substituted by another auxiliary 

tree. The trees can be adjoined via the substitution 

leaves.  

 

The cognitive linguistics appeared first in 1970's. 

One of the main pioneers of this approach is 

Langacker [17]. The cognitive approach assumes that 

the human language reflects the general cognitive 

processes of human mind. Several specific grammars 

were developed usually with some stochastic learning 

mechanism. The Word Grammar (WG) proposed by 

Hudson [18] belongs to this category. WG represents 

the grammar with a knowledge graph including all 

four levels of the human language, namely the 

semantic level, the syntax level, the morphology and 

the phonology.   

A different approach is implemented in the 

Dependency Grammar (DG) proposed by Tesniere 

[19]. The DG uses dependency description between 

the words of a sentence. The dependency has a head 

(verbs) and some dependents. The dependency 

relation corresponds to grammatical functions. The 

dependency relationship is described with a 

dependency tree called stemma. The stemma is well-

formed if [20]: 

- One and only one element is independent; 

- All others depend directly on some element; 

- No elements depend directly on more than one; 

- If A depends directly on B and some element C 

   intervenes between them (in the linear order of  

   the string), then C depends directly on A or B or 

   some other intervening element.   

A similar formalism is used in the Link Grammar 

(LG). The link grammar uses only binary 

relationships, i.e. complex relationships within a 

sentence are represented with relationships between 

two words of the sentence.  

 

3. Rule-based stemming 

In NLP systems the morphology has quite huge 

role to process input with higher accuracy. There are 

two main functions of morphology which generally 

applied in natural language processing: stemming and 

inflection. In the followings the stemming will be 

discussed in details. 

There are many rule-based stemmer approaches for 

English language since 1960s. One of the most 

popular is the Porter-stemmer[1] because of its 

simplicity and efficiency. Consonants and vowels are 

distinguished by algorithms where if a letter is not a 

consonant then it is a vowel. A consonant is denoted 

by c, a vowel by v. The list of consonants of length 

greater than 0 can be denoted by C, and the list of 

vowels of length greater than 0 can be denoted by V. 

Using previous notations any word can be formalized 

with one of the following forms: 

CVCV… C 
CVCV… V 
VCVC… C 
VCVC… V 

(1) 

These formulas can be represented by a single form 

 C VCVC… [V] (2) 

where [X] denotes arbitrary occurrence of its content. 

The form can be simplified further with using (VC)
m
 

tag which represents the VC repeated m times. So the 

final formula can be written as follows: 

 C  VC m [V] (3) 

The stemming is performed in 5 steps using rewriting 

rules. Steps have predefined order and each step 

contains alternative rules. The rules define suffix 

replacements belonging to a given condition. A rule is 

denoted by the following form: 



13 

 

 condition S1 → S2. (4) 

A rule can be applied if the ending of word fits to the 

S1 and after cutting S1 off the condition is fulfilled 

by the remaining stem.  

A condition generally can be given in terms of m, e.g. 

 m > 1 ság → (5) 

The condition part can also contain the followings: 

*S: the stem ends with S; 

*v*: the stem contains a vowel; 

*d: the stem ends with a double consonant; 

*o: the stem ends with cvc, where the second c is 

not W, X, Y; 

expressions: and, or, not. 

If more than one rule can be applied then the rule 

with longest ending will be the winner. After 

successful appliance of a rule set, the algorithm jumps 

to the next rule set. If no rule fits in a set the process 

will continue with next set. After processing 5th rule 

set, the algorithm will terminate.  

A general affix representation language has also 

been developed by Porter, called Snowball which can 

handle prefixes besides suffixes. Using Snowball [2] 

14 European language has stemmer including 

Hungarian. Tordai-stemmer [6] is a Hungarian 

stemmer based on Snowball [2]. There are many 

alternatives of Porter-stemmer like Lovins-stemmer 

[3], Paice-Husk-stemmer [4] or Krovetz-stemmer [5].  

Since natural languages are usually quite difficult 

to process, the accuracy of stemmer algorithms 

cannot be 100%. Even people can make mistakes for 

some ambiguous words. Generally three kinds of 

mistakes can be distinguished: under-stemming, over-

stemming or misconstruction. The last two error types 

can be reduced with using of exception dictionary. 

  

4. Architecture of morphology analyzer 

The morphology of Hungarian language is very 

compound with rich inflection, high number of 

compound words and huge set of derivative form of 

words. In Hungarian language there are many well-

defined grammar rules which can be applied in 

inflection but there are numerous exceptional forms 

of inflected words which are not fit to any rules. 

Inflection transforms a stem with agglutinating 

suffixes to it. The order of suffixes is not arbitrary; it 

can be described with a directed graph represented by 

a finite state automaton. 

Regarding previous statements the structure of 

morphology module of our NLP system can be seen 

in following figure. 

 
Fig. 1 – Structure of morphology module 

The stem dictionary contains the stems of the 

language which can be defined in two ways. One of 

them declares that stems contain formative elements, 

so the stemmer will not cut them. This approach is 

used e.g. in Tordai-stemmer. The other procedure 

identifies the formative elements as suffixes also 

which have to be cut from stem off. The later 

approach tends to over-stemming more than the first 

one. In our proposed system, stem dictionary should 

contain the basic words of Hungarian language with 

allomorph information. Allomorph is used when there 

are different forms of the same word e.g. ‘kettő’, 

‘két’. In this case the allomorph of ‘két’ is ‘kettő’. 

The structure of suffix dictionary can be seen in 

following Table 1. 

 
Table 1. Structure of suffix dictionary 

Field name Description 

ID 
A number for identifying 

suffix. 

Value 
The value of suffix like ‘-

ban’. 

Vowel_harmony 

The vowel harmony of 

stem besides the given 

suffix can be applied. 

Type 
The type of suffix: ‘képző’, 

‘jel’ ‘rag’. 

Code 
The code of suffix like 

cas<acc>. 

Start_class 
The POS of word before 

using suffix. 

End_class 
The POS of word after 

agglutinating suffix. 

Terminal 

It is a logical value which 

indicates that the suffix is 

terminal or not. 

 

Dictionary of exceptions contains the modified 

form (allomorph) of stem and references to the 

original stem and to a suffix. The suffix should be 

applied to get the modified allomorph of stem 

considering that not all inflection of the same stem is 

exceptional. E.g. in case of accusative of stem ‘cső’ 

the result inflected word is ‘csövet’, where the 

allomorph is ‘csöv’, the suffix is ‘-et’ and the original 

stem is ‘cső’. But if we use the ‘-ban’ suffix the result 

will be ‘csőben’, which is not exceptional. 

 



14 

 

The rules are the fourth big part of morphology 

module which declares the substitution of character 

sequences during inflection. The rules are denoted 

similar to Porter-stemmer (4); the difference is the 

condition which denotes the place where the 

substitution can be made. So if matching rules are 

searching for a transformation in the center of the 

word, the terminal rules cannot be processed which 

can be applied only for the last suffix of word. 

The last part of the module is the FSA which 

describes the possible suffix order for a given part of 

speech. It means that there are different FSAs for 

verb, noun, adjective and numeral. Certainly these 

graphs can be linked. E.g. when a verb will be 

transformed into noun with derivative suffix, the 

possible order of suffixes belongs to the noun’s FSA. 

After declaring the main structural element of 

morphology module, the tasks of analyzer should also 

be defined in the following list: 

 Determining the stem of the word; 

 Analyzing suffix chain which has been cut 

off from stem; 

 Applying FSA to validate suffix chains and 

excludes invalid results. 

The most important task is the stemming since the 

suffix determination depends on the stem. Stemming 

can have many ways: one of them is to cut suffixes 

off from the end of word until the final stem is 

reached. Other way is to get the first n characters of 

the word and try to match to a stored stem of 

language. In the proposed solution the second one is 

used. The algorithm is the following: 

1. Let n=1. 

2. Get the first n character of word. 

3. Check if it has belonging stem. 

a. If stem is found, it adds to result list 

and go to step 4. 

b. If stem is not found, go to step 4. 

4. If length of word is greater than n, increase n 

with 1 and go to step 2 else go to step 5. 

5. Return list of possible stems. 
After we get the possible stems, we should 

determine the suffix chain for each stem. The 

algorithm is the following: 

1. Let p=1, n=1, L=length of longest suffix. 

2. Get the first n characters of suffix chain from 

position p. 

3. Check if character sequence is a suffix or 

not. 

a. If matching suffix is found, add it 

as a node to the result tree and go to 

step 4. 

b. It no suffix is found go to step 4. 

4. Check if n is less or equal than L. If true, 

increase n and go to step 2, else go to step 5. 

5. Iterate over result suffix list and do first four 

steps for remaining suffix chains. It should 

be called recursively for each result list. 

The result of suffix chain analysis is a tree with 

empty root node. All branches should be validated 

using FSA. The valid branches are the result of the 

analysis considering a word can be more right 

analysis.  

 

5. CL-based grammar parser 

The inflection transformation has a very complex 

form. In our approach the rule is given with a set of 

distinct basic transformation rules. An atomic rule 

corresponds to an unambiguous simple conversion 

rule. Here are some examples for atomic rules.  

*(#,t) : a character ’t’ is appended to the end of 

the word; 

*ab(i,o)*(a,át): the first occurrence of ’abi’ is 

replaced with ’abo’ and the ending ’a’ is replaced 

with ’át’. 

In natural languages, the transformation rule 

depends on the base word. Thus, the inflection 

transformation can be considered as a classification 

problem where the base word is assigned to the best 

matching transformation class. 

In the literature, inflection is usually controlled by 

a production rule system where the dominating 

solution is the application of FST or HMM[13] 

methods. In our project, a different approach was 

tested, namely the toolset of Formal Concept 

Analysis (FCA) [16]. The output of the FSA process 

is a lattice of formal concepts. This lattice represents 

the discovered concepts and the generalization and 

specialization relationships among the concepts. With 

application of special class label attributes, the 

concept lattice can be used as classification method. 

The input for the FCA analysis is a formal concept 

defined with K(OK,AK,IK) triplet where   

- OK: set of objects; 

- AK: set of attributes; 

- IK: a binary relationship between objects and 

attributes. 

Two mapping functions are defined between 

objects and attributes with: 

 

ℎ𝐾(𝑋) =  𝑎|𝑎 ∈ 𝐴𝐾: ∀𝑜 ∈ 𝑋: 𝑜𝐼𝐾𝑎   
𝑔𝐾(𝑌) =  𝑜|𝑜 ∈ 𝑂𝐾 : ∀𝑎 ∈ 𝑌: 𝑜𝐼𝐾𝑎   

(6) 

where  

𝑋 ⊆ 𝑂𝐾 , 𝑌 ⊆ 𝑂𝐾  (7) 

A pair of closed object-set and attribute-set is called 

formal concept: 

𝐶 𝑋, 𝑌 :  ℎ𝐾 𝑋 = 𝑌, 𝑔𝐾 𝑌 = 𝑋 (8) 

Among the sets of formal concepts a partial ordering 

can be defined with 

𝐶1 𝑋1 , 𝑌1  ≥𝐾  𝐶2 𝑋2 , 𝑌2   ⟺   𝑋1  ⊇ 𝑋2  (9) 

A pioneer work on application of concept lattices 

for classification is the proposal of Zhao and Yao [7]. 

In their approach, the attribute set of the context is 

extended with a class label. This label attribute 

denotes the class membership of the objects. The 

class label of a node is the aggregation of the class 

labels in the dominated sub-lattice. A concept in the 

lattice is consistent if its class label contains only one 



15 

 

class. A concept is most general consistent one if it is 

consistent but neither of its super concepts is 

consistent.  

In the inflection rule concept lattice, the attributes 

of the context correspond to the labeled character 

sequences of the words. A label contains positional 

data on the sequences. The intension of a concept is 

given by a set of labeled substrings called generalized 

word. The generalized word at a new concept is 

constructed with intersection of the corresponding 

generalized words. A default class value is also 

defined here as the class with highest support within 

the dominated concept nodes. According to [7], a 

concept lattice can be converted into a decision tree 

for determining the class attribute from the content 

attributes. The generated decision tree is a binary 

rooted tree, where each node is assigned to a 

generalized word. The classification process at a 

given node works in the following steps.  

- If the node consistent, the search terminates and 

the current transformation rule is applied. 

- If the node is inconsistent, the child nodes are 

tested. If no child node exists, the default rule is 

applied; otherwise all child nodes are tested. The 

test determines a match similarity value for 

every child. The child with maximum similarity 

is selected as next target node.   

The construction of the classification lattice is 

based on a corresponding training set. The training set 

contains samples on inflection rules, like (labda, 

labdát). In this example, the first word is the base 

word ‘ball’ and the second is the word in accusative.  

The parser module contains beside the inflection 

engine another unit to manage the different suffixes. 

In the language, there is a relative rigid rule on 

combination of the different suffixes. As the order of 

the components can be described with a regular 

grammar, a Finite State Automata (FSA) was 

implemented to control the ordering of the 

morphemes.  The FSA contains a finite set of states 

where every state here corresponds to a morpheme. 

There is an edge from morpheme A to morpheme B if 

AB is grammatical sequence of suffixes.  

The third unit in the grammar module is the stem 

dictionary. The language has a set of valid stems 

which can be inflected with different suffixes. As this 

set is a list of static words it can be implemented with 

a trie (or prefix) structure. The trie structure is a 

special tree to store words. The words with the same 

prefix part share the same tree section started at the 

root. This structure is very suitable for efficient 

storage and search operations as the same prefix part 

is stored only once for several words. 

  

6. Implementation and test results 

The speed of grammar parsing depends among 

others on used structures, search algorithms, database 

operations and indexing. The test system was 

developed in Java language using MySQL database. 

The following optimizations are used for 

acceleration: 

1. Connecting to database and querying data as 

less as possible. 

2. Do not use IN clause in select statements for 

large datasets. 

3. Cache as much database records as objects 

into memory as possible. 

4. Make index for fields which are queried 

frequently. E.g. stem values, suffix values, 

etc… 

5. Use ArrayList instead of Vector since first 

one is not synchronized and faster.  

6. Use Hashmap instead of Hashtable since 

first one is not synchronized and faster. 

7. Be aware of slow string operations. 

We should optimize two factors: speed and 

memory costs. If we want to make as fast system as 

can than we will have the higher memory costs. If we 

want the least memory costs, the speed of analyzer 

will decrease. 

Finally the following table summarizes the size of 

morphology database: 

 

Table 2. Size of morphology database 

Structure Number of records 

Stems ~94000 

Exceptional words ~23000 

Rules ~150 

Suffixes ~540 

 

Words form Szószablya [7] project has been used 

for training and testing. There are about 2.3 million of 

words in word database. The analysis of a single 

word takes approx. 2 ms, so 500 words can be 

analyzed per second on the average. 

The other measure of analysis is the accuracy. 

From 2.3 million words the portion of incorrectly 

parsed words takes approx. 10-12%. 

The grammar engine using concept lattice was 

implemented in Java application. The input for the 

application is a sentence in Hungarian. The output of 

the module is the morpheme structure of the words. 

For every word a morpheme analysis is performed. 

On the Figure 1, the input sentence is: Mit olvas Péter 

(what is Peter reading). The question word ‘Mit’ is 

parsed as  

 Mi |  FNNM | ACC 

where the first component denotes the stem, the 

second denotes the grammatical role of the stem, the 

third one is for the accusative case. 

 



16 

 

 
 

Figure 2, Morpheme parser application 

 

Based on the test results, the following 

experiences can be emphasized: 

- the speed of the parsing should be improved, 

it is significantly slower than the direct 

parsing methods; 

- the generalization logic of the CL-based 

solution is similar to the human’s logic; 

- the CL-based solution requires a relative 

large memory storage, with a lot of non-used 

nodes.  

Based on the experiences, the CL-based solution 

has some unique good property, but some further 

improvements are needed to apply it for large scale 

problem domains. 

 

5. Conclusions 

The grammar syntax parsing is a key module in 

natural language interfaces. A special grammar rule 

in agglutinative languages is the inflection rule. The 

traditional, automata-based parsers are usually not 

very effective in the parsing of inflection 

transformations. The paper presented some 

significant inflection rule implementation methods 

and compared them regarding speed and accuracy. 

The dictionary-based rule parsers provide the best 

efficiency regarding the speed factor. The paper 

presents also an alternative way using concept lattice 

–based classification method which shows a very 

good generalization capability.  

 

References 

[1] Porter MF (1980) An algorithm for suffix 

stripping. Program, 14: 130-137. 

[2] Porter, Martin. Snowball stemmers and 

resources page. On line 

http://www.snowball.tartarus.org. [Visited 

13/07/2005]  

[3] Lovins J. B. (1968). Development of a 

stemming algorithm. Mechanical Translation 

and Computational Linguistics, II, 22-3 1. 

[4] Paice, C. D. (1994). An evaluation method for 

stemming algoritms. In Proceedings of ACM-

SIGIR94, pages 42–50. 

[5] Krovetz, R. (1993). Viewing morphology as an 

inference process. In Proceedings of ACM-

SIGIR93, pages 191–203. 

[6] Tordai, A., de Rijke, M.: Hungarian 

monolingual retrieval at clef (2005) 

[7] Halácsy P., Kornai A., Németh L., Rung A., 

Szakadát I., Trón V.: A szószablya projekt – 

www.szoszablya.hu. MSZNY 2003, 298–299, 

Szeged, Magyarország (2003) 

[8] Browing, M.: Null Operator Constructions, 

Ph.D. thesis, MIT, 1987. 

[9] Chomsky, N.: Aspects of the Theory of Syntax. 

Cambridge, MIT Press, 1965. 

[10] Chomsky, N.: Formal properties of grammar, 

MIT Press, 1963. 

[11] Gildea, D., Jurafsky, D.: Automatic Induction 

of Finite State Transducer for Simple 

Phonological Rules, Meeting of ACL, 1995. 

[12] Harris, Z.: Methods in Structural Linguistics, 

University of Chicago Press, 1951. 

[13] Manning, C., Schütze, H.: Foundations of 

Statistical Natural language Processing, MIT 

Press, 1999. 

[14] Shannon, C.: Prediction and entropy of  

printed English, Bell System Technical 

Journal, 1951. 

[15] Wallace,C.: Seneca Morphology, International 

Journal  of American Linguistic, 1960. 

[16] Jurafsky D., Martin J. H.: Speech and 

Language Processing, Prentice Hall, 2000. 

[17] Krenn, B., Samuelsson C.: The Linguistic's 

Guide to Statistics, 1997. 

[18] Hudson, R.: Language Networks: The new 

Word Grammar, Oxford University Press, 

2007 

[19] Tesniere,L.: Elements de syntaxe structurale, 

Paris, Klincksieck, 1959 

[20] Robinson, J. Dependency structures and 

transformation rules, Language, 46. 259-285, 

1970 

 


